Fast Data Processing with Spark
Thumbnail 1

Fast Data Processing with Spark

Product ID: 18059322
Secure Transaction
Frequently Bought Together

Description

Spark offers a streamlined way to write distributed programs and this tutorial gives you the know-how as a software developer to make the most of Spark's many great features, providing an extra string to your bow. Overview Implement Spark's interactive shell to prototype distributed applications Deploy Spark jobs to various clusters such as Mesos, EC2, Chef, YARN, EMR, and so on Use Shark's SQL query-like syntax with Spark In Detail Spark is a framework for writing fast, distributed programs. Spark solves similar problems as Hadoop MapReduce does but with a fast in-memory approach and a clean functional style API. With its ability to integrate with Hadoop and inbuilt tools for interactive query analysis (Shark), large-scale graph processing and analysis (Bagel), and real-time analysis (Spark Streaming), it can be interactively used to quickly process and query big data sets. Fast Data Processing with Spark covers how to write distributed map reduce style programs with Spark. The book will guide you through every step required to write effective distributed programs from setting up your cluster and interactively exploring the API, to deploying your job to the cluster, and tuning it for your purposes. Fast Data Processing with Spark covers everything from setting up your Spark cluster in a variety of situations (stand-alone, EC2, and so on), to how to use the interactive shell to write distributed code interactively. From there, we move on to cover how to write and deploy distributed jobs in Java, Scala, and Python. We then examine how to use the interactive shell to quickly prototype distributed programs and explore the Spark API. We also look at how to use Hive with Spark to use a SQL-like query syntax with Shark, as well as manipulating resilient distributed datasets (RDDs). What you will learn from this book Prototype distributed applications with Spark's interactive shell Learn different ways to interact with Spark's distributed representation of data (RDDs) Load data from the various data sources Query Spark with a SQL-like query syntax Integrate Shark queries with Spark programs Effectively test your distributed software Tune a Spark installation Install and set up Spark on your cluster Work effectively with large data sets Approach This book will be a basic, step-by-step tutorial, which will help readers take advantage of all that Spark has to offer. Who this book is written for Fast Data Processing with Spark is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too much to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.

Common Questions

Trustpilot

TrustScore 4.5 | 7,300+ reviews

Imran F.

Very reliable shop with genuine products. Will definitely buy again!

2 weeks ago

Reema J.

Perfect platform for hard-to-find items. Delivery was prompt.

1 month ago

Shop Global, Save with Desertcart
Value for Money
Competitive prices on a vast range of products
Shop Globally
Serving over 300 million shoppers across more than 200 countries
Enhanced Protection
Trusted payment options loved by worldwide shoppers
Customer Assurance
Trusted payment options loved by worldwide shoppers.
Desertcart App
Shop on the go, anytime, anywhere.
$83427

Duties & taxes incl.

Chilestore
1
Free Returns

30 daysfor PRO membership users

15 dayswithout membership

Secure Transaction

Trustpilot

TrustScore 4.5 | 7,300+ reviews

Khalid Z.

Great experience from order to delivery. Highly recommended!

1 week ago

Ravi S.

I loved the variety of products available. Will definitely shop again.

2 months ago

Fast Data Processing With Spark | Desertcart Chile